

BPS	C12 : Civil EnggII	BPSC-AE Mains	Test S	Series	ENGINEERS ACADEMY
18.	Ans. (a)		35.	Ans. (c)	
	Section-22 of Environment (Pr	otection) Act, 1986			$q = 10 m^3/s/m$
	has a provision for No right	to appeal.			$V_1 = 20 \text{ m/s}$
19.	Ans. (a)				$F_1 = \left(\frac{q^2}{gy_1^3}\right)^{1/2} = \left[\frac{100}{9.81 \times (0.5)^3}\right]^{1/2}$
20.	Ans. (c)				$\mathbf{F}_1 = \left(\frac{1}{\mathbf{g}\mathbf{y}_1^3}\right) = \left\lfloor\frac{1}{9.81\times(0.5)^3}\right\rfloor$
21.	Ans. (c)				= 9.03
22.	Ans. (b)				a 10
23.	Ans. (c)				$y_1 = \frac{q}{V_1} = \frac{10}{20} = 0.$
24.	Ans. (b)				
25.	Ans. (a)			Using	$\frac{y_2}{y_1} = \frac{1}{2} \left[-1 + \sqrt{1 + 8F_1^2} \right]$
26.	Ans. (b)				$y_2 = \frac{0.5}{2} \left[-1 + \sqrt{1 + 8 \times (9.03)^2} \right]$
27.	Ans. (a)				
28.	Ans. (d)				$y_2 = 6.14 m$
			36.	Ans. (a)	
29.	Ans. (a)				$\mathbf{y}_0 > \mathbf{y}_c$
30. 51	Ans. (d)				should lie above CDL.
31.	Ans. (a)		37.	Ans. (a)	
32.	Ans. (a) A_{res} (c)				$E_1 = 3$ m at upstream section
3.	Ans. (c)	1 1100			$E_{c} = 2.5 m$
	When vertical and horizontal s the model is called distorted			Max1mum	loss of energy
	Velocity ratio,	model.			$E_1 = E_c + \Delta z$
	velocity ratio,				$\Delta z = E_1 - E_c$
	$V_r = \sqrt{L_{rV}} = $	$\frac{1}{2} = \frac{1}{2}$	20	Ama (d)	$\Delta z = 0.5 \text{ m}$
	1 4 1 4	y 3	38.	Ans. (d)	1 4 1 1 4 1 4
	Area ratio, $A_r = L_{rV}L_{rH} = \frac{1}{9}$	$\frac{1}{40}$			w length becomes equal to mixing e flow get fully developed and the
	Discharge ratio,				of boundary layer mets at the pipe
		NCCDO			e. Beyond this length, the velocity

$$\mathbf{Q}_{\mathrm{r}} = \mathbf{V}_{\mathrm{r}}\mathbf{A}_{\mathrm{r}} = \frac{\mathbf{Q}_{\mathrm{m}}}{\mathbf{Q}_{\mathrm{p}}}$$

Discharge in prototype

$$Q_{p} = \frac{Q_{m}}{V_{r}A_{r}}$$
$$= 1 \times 3 \times 9 \times 40$$
$$= 1080 \ lps$$

34. Ans. (c)

In hydraulic jump, flow changes from super critical to subcritical. The strength of jump is decided by Froude Number corresponding to supercritical flow i.e. upstream flow (F_1) .

info@engineersacademy.org

+91 809 444 1 777

Pipe flow Flow over flat plate

Ans. (b)

Type

39.

For open channel

for remaining length.

Open channel flow

 $(\text{Re})_{\text{critical}} = 500$

Flow around spherical bodies

Flow between parallel plates

distribution is parabolic which is remain parabolic

Reynold number (**R**_e)_{critical}

 $R_{e} = 1$

 $R_{e} = 500$ $R_{e} = 1000$

 $R_{e} = 2000$

 $R_{e} = 3 \times 10^{5}$

7

BPS	SC12 : Civi	I EnggII BPSC-AE Mains	Test	Series > ENGINEERS ACADEMY				
	Flow is lan	ninar when		V = 1.0 m/s				
		Re < 500	43.	Ans. (b)				
	Flow is tur	bulent when	44.	Ans. (b)				
		Re > 500	45.	Ans. (b)				
40.	Ans. (c)			Volumetric method of assessment leads to lower				
41.	Ans. (a)		• -	duty.				
42.	Ans. (c)		46. 47.	Ans. (b)				
	-	As per Lacey's theory, velocity of flow in		Ans. (c)				
	channel is g	given by		In sharda type fall, the rectangular crest can be				
		$\mathbf{V} = \left[\frac{\mathbf{Q}\mathbf{f}^2}{140}\right]^{1/6}$	10	used for discharge limited upto 14 cumec.				
		$\mathbf{v} = \begin{bmatrix} 140 \end{bmatrix}$	48.	Ans. (b)				
	where	Q = Discharge of channel (m3/s)	49. 50	Ans. (b)				
		f = Lacey's silt factor	50.	Ans. (b)				
	Here,	$Q = 70 m^3/s$		202				
		$f = \sqrt{2}$		000				
		$\frac{70 \times (\sqrt{2})^2}{\sqrt{2}}$						
	·.	$V = \boxed{\frac{1}{140}}$						
		CINGINCCK:						